True size matters for conservation: deep-sea coral reefs are typically small and estimates of their size are remarkably robust to a method used to define them
Abstract:
Protection of vulnerable marine ecosystems (VME) is a critical goal for marine conservation. Yet, in many deep-sea settings, where quantitative data are typically sparse, it is challenging to correctly identify the location and size of VMEs. Here we assess the sensitivity of a method to identify coral reef VMEs based on bottom cover and abundance of the stony coral Solenosmilia variabilis on deep seamounts, using image data from a survey off Tasmania, Australia, in 2018. Whilst there was some detectable influence from varying coral cover and the abundance of live coral heads, the distribution of coral reef VMEs was not substantially shifted by changing these criteria or altering the attributes of a moving window used to spatially aggregate coral patches. Whilst applying stricter criteria for classifying VMEs predictably produced smaller areas of coral reef VME, these differences were not sizeable and were often negligible. Coral reef VMEs formed large contiguous “blankets,” mainly on the peaks and flanks of seamounts, but were absent from the continental slope where S. variabilis occurred at low abundance (cover) and/or had no living colonies. The true size of the Tasmanian coral reef VMEs ranged from 0.02 to 1.16 km2 ; this was relatively large compared to reefs of S. variabilis mapped on New Zealand seamounts, but is small compared to the scales used for regional model predictions of suitable habitat (typically 1 km2 grid cell), and much smaller than the smallest units of management interest (100s–1000s km2 ). A model prediction of the area of suitable habitat for coral reef in the Tasmanian area was much greater than the area of coral reef estimated in this study. That the method to estimate VME size is not overly sensitive to the choice of criteria is highly encouraging in the context of designing spatial conservation measures that are robust, although its broader application, including to other VME indicator taxa, needs to be substantiated by scenario testing in different environments. Importantly, these results should give confidence for stakeholder uptake and form the basis for better predictive VME models at larger spatial scales and beyond single taxa.
The Fate of Deep-Sea Coral Reefs on Seamounts in a Fishery-Seascape: What Are the Impacts, What Remains, and What Is Protected?
Abstract:
Environmental harm to deep-sea coral reefs on seamounts is widely attributed to bottom trawl fishing. Yet, accurate diagnoses of impacts truly caused by trawling are surprisingly rare. Similarly, comprehensive regional assessments of fishing damage rarely exist, impeding evaluations of, and improvements to, conservation measures. Here we report on trawling impacts to deep-sea scleractinian coral reefs in a regional (10–100s of km) fishery seascape off Tasmania (Australia). Our study was based on 148 km of towed camera transects (95 transects on 51 different seamounts with 284,660 separate video annotations and 4,674 “on-seamount” images analysed), and commercial trawling logbook data indexing fishing effort on and around seamounts. We detect trawling damage on 88% (45 of 51) of seamounts. Conversely, intact deep-sea coral reefs persist in refuge areas on about 39% (20 of 51) of the seamounts, and extend onto rocky seabed adjacent to seamounts. Depth significantly shapes the severity of trawl damage. The most profound impacts are evident on shallow seamounts (those peaking in < 950 m depths) where recent and repeated trawling reduced reefs built by scleractinian corals to rubble, forming extensive accumulations around seamount peaks and flanks. At intermediate depths (∼950–1,500 m), trawling damage is highly variable on individual seamounts, ranging from substantial impacts to no detection of coral loss. Deep seamounts (summit depth > 1,500 m) are beyond the typical operating depth of the trawl fishery and exceed the depth range of living deep-sea coral reefs in the region. Accurately diagnosing the nature and extent of direct trawling impacts on seamount scleractinian coral reefs must use stringent criteria to guard against false positive identifications of trawl impact stemming from either (1) misidentifying areas that naturally lacked deep-sea coral reef as areas where coral had been removed, or (2) attributing trawling as the cause of natural processes of reef degradation. The existence of sizeable deep-sea coral reef refuges in a complex mosaic of spatially variable fishing effort suggests that more nuanced approaches to conservation may be warranted than simply protecting untrawled areas, especially when the biological resources with conservation value are rare in a broader seascape context.
New areas of deep-sea coral reef and more than 100 unnamed species – including corals, lobsters and molluscs– have been discovered on undersea mountains in marine parks south of Tasmania.
Scientists and park managers returned to Hobart today after a four-week survey of the seamounts on CSIRO research vessel Investigator led by CSIRO.